Evolution of Irradiation-Induced Vacancy Defects in Boron Nitride Nanotubes.
نویسندگان
چکیده
Irradiation-induced vacancy defects in multiwalled (MW) boron nitride nanotubes (BNNTs) are investigated via in situ high-resolution transmission electron microscope operated at 80 kV, with a homogeneous distribution of electron beam intensity. During the irradiation triangle-shaped vacancy defects are gradually generated in MW BNNTs under a mediate electron current density (30 A cm(-2)), by knocking the B atoms out. The vacancy defects grow along a well-defined direction within a wall at the early stage as a result of the curvature induced lattice strain, and then develop wall by wall. The orientation or the growth direction of the vacancy defects can be used to identify the chirality of an individual wall. With increasing electron current density, the shape of the irradiation-induced vacancy defects changes from regular triangle to irregular polygon.
منابع مشابه
Correction to In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation.
We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C-NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst-free procedure, at room temperature and high vacuum. The ...
متن کاملAb initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.
A systematic study of vacancies in single-walled carbon nanotubes and boron nitride nanotubes was carried out. First principles calculations within the framework of density functional theory using the CASTEP code are used to optimize fully the geometries of the systems. The generalized gradient approximation is used for the exchange-correlation functional. We find that the pristine single-walle...
متن کاملA molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes
In this article, we examine the Young modulus of (6, m) boron-nitride nanotubes with vacancy and functionalization defects. We employ molecular dynamics simulations using the Parrinello-Rahman approach. To this end, all systems are modeled with a reactive many-body bond order Tersoff-potential with parameters due to Matsunaga et al [1], which is able to accurately describe covalent bonding. We ...
متن کاملVacancy complexes in carbon and boron nitride nanotubes.
The effect of divacancies on the stability, structural and electronic properties of carbon and boron nitride nanotubes is studied using the ab initio density functional method. V(B)B(N) is more stable in the boron-rich and less stable in the nitrogen-rich growth conditions, and V(N)N(B) is more stable in the nitrogen-rich than in the boron-rich conditions. We find that stoichiometric defects V(...
متن کاملLongitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons.
Boron nitride nanoribbons (BNNRs), the boron nitride structural equivalent of graphene nanoribbons (GNRs), are predicted to possess unique electronic and magnetic properties. We report the synthesis of BNNRs through the potassium-intercalation-induced longitudinal splitting of boron nitride nanotubes (BNNTs). This facile, scalable synthesis results in narrow (down to 20 nm), few sheet (typicall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2016